2 research outputs found

    Kappa-Minkowski spacetime, Kappa-Poincar\'{e} Hopf algebra and realizations

    Full text link
    We unify kappa-Minkowki spacetime and Lorentz algebra in unique Lie algebra. Introducing commutative momenta, a family of kappa-deformed Heisenberg algebras and kappa-deformed Poincare algebras are defined. They are specified by the matrix depending on momenta. We construct all such matrices. Realizations and star product are defined and analyzed in general and specially, their relation to coproduct of momenta is pointed out. Hopf algebra of the Poincare algebra, related to the covariant realization, is presented in unified covariant form. Left-right dual realizations and dual algebra are introduced and considered. The generalized involution and the star inner product are analyzed and their properties are discussed. Partial integration and deformed trace property are obtained in general. The translation invariance of the star product is pointed out. Finally, perturbative approach up to the first order in aa is presented in Appendix.Comment: references added, typos corrected, acceped in J. Phys.

    Noncommutative Differential Forms on the kappa-deformed Space

    Full text link
    We construct a differential algebra of forms on the kappa-deformed space. For a given realization of the noncommutative coordinates as formal power series in the Weyl algebra we find an infinite family of one-forms and nilpotent exterior derivatives. We derive explicit expressions for the exterior derivative and one-forms in covariant and noncovariant realizations. We also introduce higher-order forms and show that the exterior derivative satisfies the graded Leibniz rule. The differential forms are generally not graded-commutative, but they satisfy the graded Jacobi identity. We also consider the star-product of classical differential forms. The star-product is well-defined if the commutator between the noncommutative coordinates and one-forms is closed in the space of one-forms alone. In addition, we show that in certain realizations the exterior derivative acting on the star-product satisfies the undeformed Leibniz rule.Comment: to appear in J. Phys. A: Math. Theo
    corecore